
IBM

XL

C/C++

Advanced

Edition

for

Mac

OS

X

Technology

Preview

Version

6.0

���

IBM

XL

C/C++

Advanced

Edition

for

Mac

OS

X

Technology

Preview

Version

6.0

���

First

Edition

(December

2003)

This

document,

the

applications,

and

the

functions

discussed,

are

offered

as

Technology

Previews.

They

are

provided

on

an

″AS-IS″

BASIS,

WITHOUT

WARRANTY

OR

CONDITION

OF

ANY

KIND,

INCLUDING

THE

IMPLIED

WARRANTIES

OR

CONDITIONS

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

PURPOSE.

©

Copyright

International

Business

Machines

Corporation

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Program

Parallelization

.

.

.

.

.

.

.

. 3

OpenMP

Pragma

Directives

.

.

.

.

.

.

.

.

. 3

Using

the

smp

compiler

option

.

.

.

.

.

.

. 4

Shared

and

Private

Variables

in

a

Parallel

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Pragma

Directives

.

.

.

.

.

.

.

.

.

.

.

. 7

#pragma

omp

atomic

.

.

.

.

.

.

.

.

.

. 7

#pragma

omp

parallel

.

.

.

.

.

.

.

.

.

. 8

#pragma

omp

for

.

.

.

.

.

.

.

.

.

.

.

. 9

#pragma

omp

parallel

for

.

.

.

.

.

.

.

.

. 13

#pragma

omp

ordered

.

.

.

.

.

.

.

.

.

. 13

#pragma

omp

section,

#pragma

omp

sections

.

. 13

#pragma

omp

parallel

sections

.

.

.

.

.

.

. 14

#pragma

omp

single

.

.

.

.

.

.

.

.

.

. 15

#pragma

omp

master

.

.

.

.

.

.

.

.

.

. 15

#pragma

omp

critical

.

.

.

.

.

.

.

.

.

. 15

#pragma

omp

barrier

.

.

.

.

.

.

.

.

.

. 16

#pragma

omp

flush

.

.

.

.

.

.

.

.

.

.

. 16

#pragma

omp

threadprivate

.

.

.

.

.

.

.

. 17

Parallel

Processing

Support

.

.

.

.

.

.

.

.

. 17

Run-time

Options

for

Parallel

Processing

.

.

. 18

OpenMP

Run-Time

Options

for

Parallel

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Built-in

Functions

Used

for

Parallel

Processing

. 22

Objective-C

and

XL

C/C++

for

Mac

OS

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Compiler

Options

.

.

.

.

.

.

.

.

.

.

.

. 25

–qsourcetype

.

.

.

.

.

.

.

.

.

.

.

.

. 25

–framework

.

.

.

.

.

.

.

.

.

.

.

.

. 26

–qframeworkdir

.

.

.

.

.

.

.

.

.

.

.

. 26

–lobjc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Limitations

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Trademarks

and

Service

Marks

.

.

.

.

.

.

.

. 27

Industry

Standards

.

.

.

.

.

.

.

.

.

.

.

. 27

©

Copyright

IBM

Corp.

2003

iii

iv

Technology

Preview

Introduction

This

document

is

a

technology

preview

of

features

for

the

IBM®

XL

C/C++

Advanced

Edition

for

the

Mac

OS

X

Version

6.0.

The

features

covered

are:

v

Parallel

processing

with

the

XL

C/C++

compiler,

implementing

the

OpenMP

API

Version

1.0

v

Objective-C

and

XL

C/C++

for

Mac

OS

X

Note!

Features

discussed

in

these

sections,

as

part

of

the

Technology

Preview,

are

provided

″as

is″

and

not

part

of

the

XL

C/C++

compiler

product.

The

purpose

of

this

preview

is

to

showcase

early

results

of

development

work.

There

is

no

support

for

these

features.

©

Copyright

IBM

Corp.

2003

1

2

Technology

Preview

Program

Parallelization

Parallel

regions

of

program

code

are

executed

by

multiple

threads,

possibly

running

on

multiple

processors.

The

number

of

threads

created

is

determined

by

the

run-time

options

and

calls

to

library

functions.

Work

is

distributed

among

available

threads

according

to

the

specified

scheduling

algorithm.

The

XL

C/C++

compiler

lets

you

explicitly

identify

sections

of

the

program

code

to

be

parallelized,

using

OpenMP

pragma

directives.

The

compiler

supports

the

OpenMP

specification

version

1.0.

For

more

information

about

the

OpenMP

Specification,

see:

v

The

OpenMP

Web

site

at

http://www.openmp.org

v

The

OpenMP

specifications

at

http://www.openmp.org/specs

OpenMP

Pragma

Directives

OpenMP

pragma

directives

exploit

shared

memory

parallelism

by

defining

various

types

of

parallel

regions.

Parallel

regions

can

include

both

iterative

and

non-iterative

segments

of

program

code.

Parallel

processing

operations

are

controlled

by

pragma

directives

in

your

program

source.

The

pragmas

have

effect

only

when

parallelization

is

enabled

with

the

-qsmp

compiler

option.

For

more

information,

see

“Using

the

smp

compiler

option”

on

page

4

Pragmas

fall

into

four

general

categories:

v

Those

that

allow

definition

of

parallel

regions

in

which

work

is

done

by

threads

in

parallel.

Most

of

the

OpenMP

directives

either

statically

or

dynamically

bind

to

an

enclosing

parallel

region.

v

Those

that

allow

definition

of

how

work

will

be

distributed

or

shared

across

the

threads

in

a

parallel

region.

v

Those

that

allow

control

of

synchronization

among

threads.

v

Those

that

allow

definition

of

the

scope

of

data

visibility

across

threads.

For

more

information

about

the

specific

pragmas,

see

“Pragma

Directives”

on

page

7.

The

syntax

of

an

omp

pragma

is:

#pragma

omp

directive-name

[clause[

[,]

clause]...]

new-line

Pragma

directives

generally

appear

immediately

before

the

section

of

code

to

which

they

apply.

The

omp

parallel

directive

is

used

to

define

the

region

of

program

code

to

be

parallelized.

Other

OpenMP

directives

define

visibility

of

data

variables

in

the

defined

parallel

region

and

how

work

within

that

region

is

shared

and

synchronized.

For

example,

the

following

example

defines

a

parallel

region

in

which

iterations

of

a

for

loop

can

run

in

parallel:

©

Copyright

IBM

Corp.

2003

3

http://www.openmp.org
http://www.openmp.org/specs

#pragma

omp

parallel

{

#pragma

omp

for

for

(i=0;

i<n;

i++)

...

}

This

example

defines

a

parallel

region

in

which

two

or

more

non-iterative

sections

of

program

code

can

run

in

parallel:

#pragma

omp

sections

{

#pragma

omp

section

structured_block_1

...

#pragma

omp

section

structured_block_2

...

....

}

Using

the

smp

compiler

option

Purpose

Enables

parallelization

of

program

code.

Syntax

��

�

nosmp

-q

smp

:

norec_locks

nonested_par

explicit

noomp

noopt

auto

=

noauto

opt

omp

noexplicit

nested_par

rec_locks

runtime

schedule

=

dynamic

guided

=

n

static

affinity

��

where:

auto

Enables

automatic

parallelization

and

optimization

of

program

code.

noauto

Disables

automatic

parallelization

of

program

code.

Program

code

explicitly

parallelized

with

SMP

or

OMP

pragma

statements

is

optimized.

opt

Enables

automatic

parallelization

and

optimization

of

program

code.

4

Technology

Preview

noopt

Enables

automatic

parallelization,

but

disables

optimization

of

parallelized

program

code.

Use

this

setting

when

debugging

parallelized

program

code..

omp

Enables

strict

compliance

to

the

OMP

standard.

Automatic

parallelization

is

disabled.

Parallelized

program

code

is

optimized.

Only

OMP

parallelization

pragmas

are

recognized.

noomp

Enables

automatic

parallelization

and

optimization

of

program

code.

explicit

Enables

pragmas

controlling

explicit

parallelization

of

loops.

noexplicit

Disables

pragmas

controlling

explicit

parallelization

of

loops.

nested_par

If

specified,

nested

parallel

constructs

are

not

serialized.

nested_par

does

not

provide

true

nested

parallelism

because

it

does

not

cause

new

team

of

threads

to

be

created

for

nested

parallel

regions.

Instead,

threads

that

are

currently

available

are

re-used.

This

option

should

be

used

with

caution.

Depending

on

the

number

of

threads

available

and

the

amount

of

work

in

an

outer

loop,

inner

loops

could

be

executed

sequentially

even

if

this

option

is

in

effect.

Parallelization

overhead

may

not

necessarily

be

offset

by

program

performance

gains.

nonested_par

Disables

parallization

of

nested

parallel

constructs.

rec_locks

If

specified,

recursive

locks

are

used,

and

nested

critical

sections

will

not

cause

a

deadlock.

norec_locks

If

specified,

recursive

locks

are

not

used.

schedule=sched_type[=n]

Specifies

what

kind

of

scheduling

algorithms

and

chunk

size

(n)

are

used

for

loops

to

which

no

other

scheduling

algorithm

has

been

explicitly

assigned

in

the

source

code.

If

sched_type

is

not

specified,

runtime

is

assumed

for

the

default

setting.

Notes

v

The

-qnosmp

default

option

setting

specifies

that

no

code

should

be

generated

for

parallelization

directives,

though

syntax

checking

will

still

be

performed.

v

Specifying

-qsmp

without

suboptions

is

equivalent

to

specifying

-qsmp=auto:explicit:noomp:norec_locks:nonested_par:schedule=runtime

or

-qsmp=opt:explicit:noomp:norec_locks:nonested_par:schedule=runtime.

v

Specifying

-qsmp

implicitly

sets

-O2.

The

-qsmp

option

overrides

-qnooptimize,

but

does

not

override

-O3,

-O4,

or

-O5.

When

debugging

parallelized

program

code,

you

can

disable

optimization

in

parallelized

program

code

by

specifying

qsmp=noopt.

v

Specifying

-qsmp

defines

the

_IBMSMP

preprocessing

macro.

v

-qsmp

must

be

used

only

with

thread-safe

compiler

mode

invocations

such

as

xlc_r.

These

invocations

ensure

that

the

pthreads,

xlsmp,

and

thread-safe

versions

of

all

default

run-time

libraries

are

linked

to

the

resulting

executable.

Shared

and

Private

Variables

in

a

Parallel

Environment

Variables

can

have

either

shared

or

private

context

in

a

parallel

environment.

v

Variables

in

shared

context

are

visible

to

all

threads

running

in

associated

parallel

loops.

Program

Parallelization

5

v

Variables

in

private

context

are

hidden

from

other

threads.

Each

thread

has

its

own

private

copy

of

the

variable,

and

modifications

made

by

a

thread

to

its

copy

are

not

visible

to

other

threads.

The

default

context

of

a

variable

is

determined

by

the

following

rules:

v

Variables

with

static

storage

duration

are

shared.

v

Dynamically

allocated

objects

are

shared.

v

Variables

with

automatic

storage

duration

created

within

the

thread

are

private.

v

Variables

in

existence

prior

to

entering

a

parallel

region

are

shared

unless

specified

otherwise.

v

Variables

in

heap-allocated

memory

are

shared.

There

can

be

only

one

shared

heap.

v

All

variables

defined

outside

a

parallel

construct

become

shared

when

the

parallel

loop

is

encountered.

v

Loop

iteration

variables

are

private

within

their

loops.

The

value

of

the

iteration

variable

after

the

loop

is

the

same

as

if

the

loop

were

run

sequentially.

v

Memory

allocated

within

a

parallel

loop

by

the

alloca

function

persists

only

for

the

duration

of

one

iteration

of

that

loop,

and

is

private

for

each

thread.

The

following

code

segments

show

examples

of

these

default

rules:

int

E1;

/*

shared

static

*/

int

main

(argvc,...)

{

/*

argvc

is

shared

*/

int

i;

/*

shared

automatic

*/

void

*p

=

malloc(...);

/*

memory

allocated

by

malloc

*/

/*

is

accessible

by

all

threads

*/

/*

and

cannot

be

privatized

*/

#pragma

omp

parallel

firstprivate

(p)

{

int

b;

/*

private

automatic

*/

static

int

s;

/*

shared

static

*/

#pragma

omp

for

for

(i

=0;...)

{

=

b;

/*

b

is

still

private

here

!

*/

foo

(i);

/*

i

is

private

here

because

it

*/

/*

is

an

iteration

variable

*/

}

#pragma

omp

parallel

{

=

b

/*

b

is

shared

here

because

it

*/

/*

is

another

parallel

region

*/

}

}

}

int

E2;

/*shared

static

*/

void

foo

(int

x)

{

/*

x

is

private

for

the

parallel

*/

/*

region

it

was

called

from

*/

int

c;

/*

c

is

private

for

the

parallel

*/

/*

region

it

was

called

from

*/

...

}

The

compiler

can

privatize

some

shared

variables

if

it

is

possible

to

do

so

without

changing

the

semantics

of

the

program.

For

example,

if

each

loop

iteration

uses

a

unique

value

of

a

shared

variable,

that

variable

can

be

privatized.

Privatized

shared

variables

are

reported

by

the

-qinfo=private

option.

Use

critical

sections

to

synchronize

access

to

all

shared

variables

not

listed

in

this

report.

6

Technology

Preview

Some

OpenMP

preprocessor

directives

let

you

specify

visibility

context

for

selected

data

variables.

A

brief

summary

of

data

scope

attribute

clauses

are

listed

below:

Data

Scope

Attribute

Clause

Description

private

The

private

clause

declares

the

variables

in

the

list

to

be

private

to

each

thread

in

a

team.

firstprivate

The

firstprivate

clause

provides

a

superset

of

the

functionality

provided

by

the

private

clause.

That

is,

it

causes

each

thread

to

initialize

its

private

copy

of

a

variable

with

the

original

object

on

entry

to

the

parallel

construct.

In

this

case,

the

initializer

is

the

value

of

the

variable’s

original

object.

lastprivate

The

lastprivate

clause

provides

a

superset

of

the

functionality

provided

by

the

private

clause.

That

is,

it

causes

the

last

iteration

of

the

parallel

construct

to

assign

its

value

to

the

external

variable.

In

this

way,

the

value

of

the

private

variable

is

known

upon

exiting

the

parallel

construct.

In

this

case,

the

last

value

in

the

last

loop

or

section

is

assigned

to

the

variable’s

original

object.

shared

The

shared

clause

shares

variables

that

appear

in

the

list

among

all

the

threads

in

a

team.

All

threads

within

a

team

access

the

same

storage

area

for

shared

variables.

reduction

The

reduction

clause

informs

the

compiler

that

the

variables

in

the

clause

will

behave

as

an

arithmetic

reduction.

This

allows

the

compiler

to

optimize

the

parallelization,

increasing

the

performance.

default

The

default

clause

allows

the

user

to

affect

the

data

scope

attributes

of

variables.

Pragma

Directives

The

directives

in

this

section

control

how

the

compiler

handles

parallel

processing

in

your

program.

These

directives

apply

only

to

the

statement

or

statement

block

immediately

following

the

directive.

For

more

information

about

how

to

use

the

pragmas,

see

“OpenMP

Pragma

Directives”

on

page

3.

#pragma

omp

atomic

Description

The

omp

atomic

directive

identifies

a

specific

memory

location

that

must

be

updated

atomically

and

not

be

exposed

to

multiple,

simultaneous

writing

threads.

Syntax

The

syntax

of

this

pragma

is:

#pragma

omp

atomic

<statement_block>

statement_block

is

either

a

unary

or

binary

statement

of

scalar

type.

The

possible

binary

statement

is:

x

bin_op

=

expr

where:

v

bin_op

is

+,

*,

-,

/,

&,

^,

|,

<<,

or

>>

v

expr

is

an

scalar

expression

that

does

not

reference

x.

The

possible

unary

statement

is

x++,

++x,

x--,

or

--x.

Program

Parallelization

7

Notes:

1.

Load

and

store

operations

are

atomic

only

for

object

x.

Evaluation

of

expr

is

not

atomic.

2.

All

atomic

references

to

a

given

object

in

your

program

must

have

a

compatible

type.

3.

Objects

that

can

be

updated

in

parallel

and

may

be

subject

to

race

conditions

should

be

protected

with

the

omp

atomic

directive.

Examples

extern

float

x[],

*p

=

x,

y;

/*

Protect

against

race

conditions

among

multiple

updates.

*/

#pragma

omp

atomic

x[index[i]]

+=

y;

/*

Protect

against

races

with

updates

through

x.

*/

#pragma

omp

atomic

p[i]

-=

1.0f;

#pragma

omp

parallel

Description

The

omp

parallel

directive

explicitly

instructs

the

compiler

to

parallelize

the

chosen

segment

of

code.

Syntax

The

syntax

of

this

pragma

is:

#pragma

omp

parallel

[clause[

clause]

...]

<statement_block>

The

following

table

lists

and

describes

the

clause

options:

Clause

Description

if

(exp)

When

the

if

argument

is

specified,

the

program

code

executes

in

parallel

only

if

the

scalar

expression

represented

by

exp

evaluates

to

a

non-zero

value

at

run-time.

Only

one

if

clause

can

be

specified.

private

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Data

variables

in

list

are

separated

by

commas.

firstprivate

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Each

new

private

object

is

initialized

with

the

value

of

the

original

variable

as

if

there

was

an

implied

declaration

within

the

statement

block.

Data

variables

in

list

are

separated

by

commas.

shared

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

shared

across

all

threads.

default

(shared

|

none)

Defines

the

default

data

scope

of

variables

in

each

thread.

Only

one

default

clause

can

be

specified

on

an

omp

parallel

directive.

Specifying

default(shared)

is

equivalent

to

stating

each

variable

in

a

shared(list)

clause.

Specifying

default(none)

requires

that

each

data

variable

visible

to

the

parallelized

statement

block

must

be

explcitly

listed

in

a

data

scope

clause,

with

the

exception

of

those

variables

that

are:

v

const-qualified,

v

specified

in

an

enclosed

data

scope

attribute

clause,

or,

v

used

as

a

loop

control

variable

referenced

only

by

a

corresponding

omp

for

or

omp

parallel

for

directive.

8

Technology

Preview

Clause

Description

copyin

(list)

For

each

data

variable

specified

in

list,

the

value

of

the

data

variable

in

the

master

thread

is

copied

to

the

thread-private

copies

at

the

beginning

of

the

parallel

region.

Data

variables

in

list

are

separated

by

commas.

Each

data

variable

specified

in

the

copyin

clause

must

be

a

threadprivate

variable.

reduction

(operator:

list)

Performs

a

reduction

on

all

scalar

variables

in

list

using

the

specified

operator.

Reduction

variables

in

list

are

separated

by

commas.

A

private

copy

of

each

variable

in

list

is

created

for

each

thread.

At

the

end

of

the

statement

block,

the

final

values

of

all

private

copies

of

the

reduction

variable

are

combined

in

a

manner

appropriate

to

the

operator,

and

the

result

is

placed

back

into

the

original

value

of

the

shared

reduction

variable.

Variables

specified

in

the

reduction

clause:

v

must

be

of

a

type

appropriate

to

the

operator.

v

must

be

shared

in

the

enclosing

context.

v

must

not

be

const-qualified.

v

must

not

have

pointer

type.

Notes

When

a

parallel

region

is

encountered,

a

logical

team

of

threads

is

formed.

Each

thread

in

the

team

executes

all

statements

within

a

parallel

region

except

for

work-sharing

constructs.

Work

within

work-sharing

constructs

is

distributed

among

the

threads

in

a

team.

Loop

iterations

must

be

independent

before

the

loop

can

be

parallelized.

An

implied

barrier

exists

at

the

end

of

a

parallelized

statement

block.

Nested

parallel

regions

are

always

serialized.

#pragma

omp

for

Description

The

omp

for

directive

instructs

the

compiler

to

distribute

loop

iterations

within

the

team

of

threads

that

encounters

this

work-sharing

construct.

Syntax

#pragma

omp

for

[clause[

clause]

...]

<for_loop>

where

clause

is

any

of

the

following:

private

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Data

variables

in

list

are

separated

by

commas.

firstprivate

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Each

new

private

object

is

initialized

as

if

there

was

an

implied

declaration

within

the

statement

block.

Data

variables

in

list

are

separated

by

commas.

Program

Parallelization

9

lastprivate

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

The

final

value

of

each

variable

in

list,

if

assigned,

will

be

the

value

assigned

to

that

variable

in

the

last

iteration.

Variables

not

assigned

a

value

will

have

an

indeterminate

value.

Data

variables

in

list

are

separated

by

commas.

reduction

(operator:list)

Performs

a

reduction

on

all

scalar

variables

in

list

using

the

specified

operator.

Reduction

variables

in

list

are

separated

by

commas.

A

private

copy

of

each

variable

in

list

is

created

for

each

thread.

At

the

end

of

the

statement

block,

the

final

values

of

all

private

copies

of

the

reduction

variable

are

combined

in

a

manner

appropriate

to

the

operator,

and

the

result

is

placed

back

into

the

original

value

of

the

shared

reduction

variable.

Variables

specified

in

the

reduction

clause:

v

must

be

of

a

type

appropriate

to

the

operator.

v

must

be

shared

in

the

enclosing

context.

v

must

not

be

const-qualified.

v

must

not

have

pointer

type.

ordered

Specify

this

clause

if

an

ordered

construct

is

present

within

the

dynamic

extent

of

the

omp

for

directive.

10

Technology

Preview

schedule

(type)

Specifies

how

iterations

of

the

for

loop

are

divided

among

available

threads.

Acceptable

values

for

type

are:

dynamic

Iterations

of

a

loop

are

divided

into

chunks

of

size

ceiling(number_of_iterations/number_of_threads).

Chunks

are

dynamically

assigned

to

threads

on

a

first-come,

first-serve

basis

as

threads

become

available.

This

continues

until

all

work

is

completed.

dynamic,n

As

above,

except

chunks

are

set

to

size

n.

n

must

be

an

integral

assignment

expression

of

value

1

or

greater.

guided

Chunks

are

made

progressively

smaller

until

the

default

minimum

chunk

size

is

reached.

The

first

chunk

is

of

size

ceiling(number_of_iterations

/

number_of_threads).

Remaining

chunks

are

of

size

ceiling(number_of_iterations_remaining

/

number_of_threads).

The

minimum

chunk

size

is

1.

Chunks

are

assigned

to

threads

on

a

first-come,

first-serve

basis

as

threads

become

available.

This

continues

until

all

work

is

completed.

guided,n

As

above,

except

the

minimum

chunk

size

is

set

to

n.

n

must

be

an

integral

assignment

expression

of

value

1

or

greater.

runtime

Scheduling

policy

is

determined

at

run-time.

Use

the

OMP_SCHEDULE

environment

variable

to

set

the

scheduling

type

and

chunk

size.

static

Iterations

of

a

loop

are

divided

into

chunks

of

size

ceiling(number_of_iterations/number_of_threads).

Each

thread

is

assigned

a

separate

chunk.

This

scheduling

policy

is

also

known

as

block

scheduling.

static,n

Iterations

of

a

loop

are

divided

into

chunks

of

size

n.

Each

chunk

is

assigned

to

a

thread

in

round-robin

fashion.

n

must

be

an

integral

assignment

expression

of

value

1

or

greater.

This

scheduling

policy

is

also

known

as

block

cyclic

scheduling.

static,1

Iterations

of

a

loop

are

divided

into

chunks

of

size

1.

Each

chunk

is

assigned

to

a

thread

in

round-robin

fashion.

This

scheduling

policy

is

also

known

as

cyclic

scheduling.

nowait

Use

this

clause

to

avoid

the

implied

barrier

at

the

end

of

the

for

directive.

This

is

useful

if

you

have

multiple

independent

work-sharing

sections

or

iterative

loops

within

a

given

parallel

region.

Only

one

nowait

clause

can

appear

on

a

given

for

directive.

Program

Parallelization

11

and

where

for_loop

is

a

for

loop

construct

with

the

following

canonical

shape:
for

(init_expr;

exit_cond;

incr_expr)

statement

where:

init_expr

takes

form:

iv

=

b

integer-type

iv

=

b

exit_cond

takes

form:

iv

<=

ub

iv

<

ub

iv

>=

ub

iv

>

ub

incr_expr

takes

form:

++iv

iv++

--iv

iv--

iv

+=

incr

iv

-=

incr

iv

=

iv

+

incr

iv

=

incr

+

iv

iv

=

iv

-

incr

and

where:

iv

Iteration

variable.

The

iteration

variable

must

be

a

signed

integer

not

modified

anywhere

within

the

for

loop.

It

is

implicitly

made

private

for

the

duration

of

the

for

operation.

If

not

specified

as

lastprivate,

the

iteration

variable

will

have

an

indeterminate

value

after

the

operation

completes..

b,

ub,

incr

Loop

invariant

signed

integer

expressions.

No

synchronization

is

performed

when

evaluating

these

expressions

and

evaluated

side

effects

may

result

in

indeterminate

values..

Notes

Program

sections

using

the

omp

for

pragma

must

be

able

to

produce

a

correct

result

regardless

of

which

thread

executes

a

particular

iteration.

Similarly,

program

correctness

must

not

rely

on

using

a

particular

scheduling

algorithm.

The

for

loop

iteration

variable

is

implicitly

made

private

in

scope

for

the

duration

of

loop

execution.

This

variable

must

not

be

modified

within

the

body

of

the

for

loop.

The

value

of

the

increment

variable

is

indeterminate

unless

the

variable

is

specified

as

having

a

data

scope

of

lastprivate.

An

implicit

barrier

exists

at

the

end

of

the

for

loop

unless

the

nowait

clause

is

specified.

Restrictions

are:

v

The

for

loop

must

be

a

structured

block,

and

must

not

be

terminated

by

a

break

statement.

v

Values

of

the

loop

control

expressions

must

be

the

same

for

all

iterations

of

the

loop.

v

An

omp

for

directive

can

accept

only

one

schedule

clauses.

v

The

value

of

n

(chunk

size)

must

be

the

same

for

all

threads

of

a

parallel

region.

12

Technology

Preview

#pragma

omp

parallel

for

Description

The

omp

parallel

for

directive

effectively

combines

the

omp

parallel

and

omp

for

directives.

This

directive

lets

you

define

a

parallel

region

containing

a

single

for

directive

in

one

step.

Syntax

#pragma

omp

parallel

for

[clause[

clause]

...]

<for_loop>

Notes

All

clauses

and

restrictions

described

in

the

omp

parallel

and

omp

for

directives

apply

to

the

omp

parallel

for

directive.

#pragma

omp

ordered

Description

The

omp

ordered

directive

identifies

a

structured

block

of

code

that

must

be

executed

in

sequential

order.

Syntax

#pragma

omp

ordered

statement_block

Notes

The

omp

ordered

directive

must

be

used

as

follows:

v

It

must

appear

within

the

extent

of

a

omp

for

or

omp

parallel

for

construct

containing

an

ordered

clause.

v

It

applies

to

the

statement

block

immediately

following

it.

Statements

in

that

block

are

executed

in

the

same

order

in

which

iterations

are

executed

in

a

sequential

loop.

v

An

iteration

of

a

loop

must

not

execute

the

same

omp

ordered

directive

more

than

once.

v

An

iteration

of

a

loop

must

not

execute

more

than

one

distinct

omp

ordered

directive.

#pragma

omp

section,

#pragma

omp

sections

Description

The

omp

sections

directive

distributes

work

among

threads

bound

to

a

defined

parallel

region.

Syntax

#pragma

omp

sections

[clause[

clause]

...]

{

[#pragma

omp

section]

statement-block

[#pragma

omp

section]

statement-block

.

.

.

}

Program

Parallelization

13

where

clause

is

any

of

the

following:

private

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Data

variables

in

list

are

separated

by

commas.

firstprivate

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Each

new

private

object

is

initialized

as

if

there

was

an

implied

declaration

within

the

statement

block.

Data

variables

in

list

are

separated

by

commas.

lastprivate

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

The

final

value

of

each

variable

in

list,

if

assigned,

will

be

the

value

assigned

to

that

variable

in

the

last

section.

Variables

not

assigned

a

value

will

have

an

indeterminate

value.

Data

variables

in

list

are

separated

by

commas.

reduction

(operator:

list)

Performs

a

reduction

on

all

scalar

variables

in

list

using

the

specified

operator.

Reduction

variables

in

list

are

separated

by

commas.

A

private

copy

of

each

variable

in

list

is

created

for

each

thread.

At

the

end

of

the

statement

block,

the

final

values

of

all

private

copies

of

the

reduction

variable

are

combined

in

a

manner

appropriate

to

the

operator,

and

the

result

is

placed

back

into

the

original

value

of

the

shared

reduction

variable.

Variables

specified

in

the

reduction

clause:

v

must

be

of

a

type

appropriate

to

the

operator.

v

must

be

shared

in

the

enclosing

context.

v

must

not

be

const-qualified.

v

must

not

have

pointer

type.

nowait

Use

this

clause

to

avoid

the

implied

barrier

at

the

end

of

the

sections

directive.

This

is

useful

if

you

have

multiple

independent

work-sharing

sections

within

a

given

parallel

region.

Only

one

nowait

clause

can

appear

on

a

given

sections

directive.

Notes

The

omp

section

directive

is

optional

for

the

first

program

code

segment

inside

the

omp

sections

directive.

Following

segments

must

be

preceded

by

an

omp

section

directive.

All

omp

section

directives

must

appear

within

the

lexical

construct

of

the

program

source

code

segment

associated

with

the

omp

sections

directive.

When

program

execution

reaches

a

omp

sections

directive,

program

segments

defined

by

the

following

omp

section

directive

are

distributed

for

parallel

execution

among

available

threads.

A

barrier

is

implicitly

defined

at

the

end

of

the

larger

program

region

associated

with

the

omp

sections

directive

unless

the

nowait

clause

is

specified.

#pragma

omp

parallel

sections

Description

The

omp

parallel

sections

directive

effectively

combines

the

omp

parallel

and

omp

sections

directives.

This

directive

lets

you

define

a

parallel

region

containing

a

single

sections

directive

in

one

step.

Syntax

#pragma

omp

parallel

sections

[clause[

clause]

...]

{

[#pragma

omp

section]

statement-block

[#pragma

omp

section]

14

Technology

Preview

statement-block

.

.

.

]

}

Notes

All

clauses

and

restrictions

described

in

the

omp

parallel

and

omp

sections

directives

apply

to

the

omp

parallel

sections

directive.

#pragma

omp

single

Description

The

omp

single

directive

identifies

a

section

of

code

that

must

be

run

by

a

single

available

thread.

Syntax

#pragma

omp

single

[clause[

clause]

...]

statement_block

where

clause

is

any

of

the

following:

private

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Data

variables

in

list

are

separated

by

commas.

firstprivate

(list)

Declares

the

scope

of

the

data

variables

in

list

to

be

private

to

each

thread.

Each

new

private

object

is

initialized

as

if

there

was

an

implied

declaration

within

the

statement

block.

Data

variables

in

list

are

separated

by

commas.

nowait

Use

this

clause

to

avoid

the

implied

barrier

at

the

end

of

the

single

directive.

Only

one

nowait

clause

can

appear

on

a

given

single

directive.

Notes

An

implied

barrier

exists

at

the

end

of

a

parallelized

statement

block

unless

the

nowait

clause

is

specified.

#pragma

omp

master

Description

The

omp

master

directive

identifies

a

section

of

code

that

must

be

run

only

by

the

master

thread.

Syntax

#pragma

omp

master

statement_block

Notes

Threads

other

than

the

master

thread

will

not

execute

the

statement

block

associated

with

this

construct.

No

implied

barrier

exists

on

either

entry

to

or

exit

from

the

master

section.

#pragma

omp

critical

Description

The

omp

critical

directive

identifies

a

section

of

code

that

must

be

executed

by

a

single

thread

at

a

time.

Program

Parallelization

15

Syntax

#pragma

omp

critical

[(name)]

statement_block

where

name

can

optionally

be

used

to

identify

the

critical

region.

Identifiers

naming

a

critical

region

have

external

linkage

and

occupy

a

namespace

distinct

from

that

used

by

ordinary

identifiers.

Notes

A

thread

waits

at

the

start

of

a

critical

region

identified

by

a

given

name

until

no

other

thread

in

the

program

is

executing

a

critical

region

with

that

same

name.

Critical

sections

not

specifically

named

by

omp

critical

directive

invocation

are

mapped

to

the

same

unspecified

name.

#pragma

omp

barrier

Description

The

omp

barrier

directive

identifies

a

synchronization

point

at

which

threads

in

a

parallel

region

will

wait

until

all

other

threads

in

that

section

reach

the

same

point.

Statement

execution

past

the

omp

barrier

point

then

continues

in

parallel.

Syntax

#pragma

omp

barrier

Notes

The

omp

barrier

directive

must

appear

within

a

block

or

compound

statement.

For

example:
if

(x!=0)

{

#pragma

omp

barrier

/*

valid

usage

*/

}

if

(x!=0)

#pragma

omp

barrier

/*

invalid

usage

*/

#pragma

omp

flush

Description

The

omp

flush

directive

identifies

a

point

at

which

the

compiler

ensures

that

all

threads

in

a

parallel

region

have

the

same

view

of

specified

objects

in

memory.

Syntax

#pragma

omp

flush

[

(list)

]

where

list

is

a

comma-separated

list

of

variables

that

will

be

synchronized.

Notes

If

list

includes

a

pointer,

the

pointer

is

flushed,

not

the

object

being

referred

to

by

the

pointer.

If

list

is

not

specified,

all

shared

objects

are

synchronized

except

those

inaccessible

with

automatic

storage

duration.

An

implied

flush

directive

appears

in

conjuction

with

the

following

directives:

v

omp

barrier

v

Entry

to

and

exit

from

omp

critical.

v

Exit

from

omp

parallel.

v

Exit

from

omp

for.

v

Exit

from

omp

sections.

16

Technology

Preview

v

Exit

from

omp

single.

The

omp

flush

directive

must

appear

within

a

block

or

compound

statement.

For

example:

if

(x!=0)

{

#pragma

omp

flush

/*

valid

usage

*/

}

if

(x!=0)

#pragma

omp

flush

/*

invalid

usage

*/

#pragma

omp

threadprivate

Description

The

omp

threadprivate

directive

defines

the

scope

of

selected

file-scope

data

variables

as

being

private

to

a

thread,

but

file-scope

visible

within

that

thread.

Syntax

#pragma

omp

threadprivate

(list)

where

list

is

a

comma-separated

list

of

variables.

Notes

Each

copy

of

an

omp

threadprivate

data

variable

is

initialized

once

prior

to

first

use

of

that

copy.

If

an

object

is

changed

before

being

used

to

initialize

a

threadprivate

data

variable,

behavior

is

unspecified.

A

thread

must

not

reference

another

thread’s

copy

of

an

omp

threadprivate

data

variable.

References

will

always

be

to

the

master

thread’s

copy

of

the

data

variable

when

executing

serial

and

master

regions

of

the

program.

Use

of

the

omp

threadprivate

directive

is

governed

by

the

following

points:

v

An

omp

threadprivate

directive

must

appear

at

file

scope

outside

of

any

definition

or

declaration.

v

A

data

variable

must

be

declared

with

file

scope

prior

to

inclusion

in

an

omp

threadprivate

directive

list.

v

An

omp

threadprivate

directive

and

its

list

must

lexically

precede

any

reference

to

a

data

variable

found

in

that

list.

v

A

data

variable

specified

in

an

omp

threadprivate

directive

in

one

translation

unit

must

also

be

specified

as

such

in

all

other

translation

units

in

which

it

is

declared.

v

Data

variables

specified

in

an

omp

threadprivate

list

must

not

appear

in

any

clause

other

than

the

copyin,

schedule,

and

if

clauses.

v

The

address

of

a

data

variable

in

an

omp

threadprivate

list

is

not

an

address

constant.

v

A

data

variable

specified

in

an

omp

threadprivate

list

must

not

have

an

incomplete

or

reference

type.

Parallel

Processing

Support

This

section

contains

information

on

environment

variables

and

built-in

functions

used

to

control

parallel

processing.

Topics

in

this

section

are:

v

“Run-time

Options

for

Parallel

Processing”

on

page

18

v

“OpenMP

Run-Time

Options

for

Parallel

Processing”

on

page

20

v

“Built-in

Functions

Used

for

Parallel

Processing”

on

page

22

Program

Parallelization

17

Run-time

Options

for

Parallel

Processing

Run-time

options

affecting

parallel

processing

can

be

specified

with

the

XLSMPOPTS

environment

variable.

This

environment

variable

must

be

set

before

you

run

an

application,

and

uses

basic

syntax

of

the

form:

��

�

:

XLSMPOPTS

=

option_and_args

��

Parallelization

run-time

options

can

also

be

specified

using

OMP

environment

variables.

When

run-time

options

specified

by

OMP-

and

XLSMPOPTS-specific

environment

variables

conflict,

OMP

options

will

prevail.

Note:

You

must

use

thread-safe

compiler

mode

invocations

when

compiling

parallelized

program

code.

Run-time

option

settings

for

the

XLSMPOPTS

environment

variable

are

shown

below,

grouped

by

category:

Scheduling

Algorithm

Options

XLSMPOPTS

Environment

Variable

Option

Description

schedule=algorith=[n]

This

option

specifies

the

scheduling

algorithm

used

for

loops

not

explictly

assigned

a

scheduling

algorithm.

Valid

options

for

algorithm

are:

v

guided

v

affinity

v

dynamic

v

static

If

specified,

the

chunk

size

n

must

be

an

integer

value

of

1

or

greater.

The

default

is

scheduling

algorithm

is

static.

Parallel

Environment

Options

XLSMPOPTS

Environment

Variable

Option

Description

parthds=num

num

represents

the

number

of

parallel

threads

requested,

which

is

usually

equivalent

to

the

number

of

processors

available

on

the

system.

Some

applications

cannot

use

more

threads

than

the

maximum

number

of

processors

available.

Other

applications

can

experience

significant

performance

improvements

if

they

use

more

threads

than

there

are

processors.

This

option

gives

you

full

control

over

the

number

of

user

threads

used

to

run

your

program.

The

default

value

for

num

is

the

number

of

processors

available

on

the

system.

18

Technology

Preview

XLSMPOPTS

Environment

Variable

Option

Description

usrthds=num

num

represents

the

number

of

user

threads

expected.

This

option

should

be

used

if

the

program

code

explicitly

creates

threads,

in

which

case

num

should

be

set

to

the

number

of

threads

created.

The

default

value

for

num

is

0.

stack=num

num

specifies

the

largest

amount

of

space

required

for

a

thread’s

stack.

The

default

value

for

num

is

41943042097152.

The

glibc

library

is

compiled

by

default

to

allow

a

stack

size

of

2

Mb.

Setting

num

to

a

value

greater

than

this

will

cause

the

default

stack

size

to

be

used.

If

larger

stack

sizes

are

required,

you

should

link

the

program

to

a

glibc

library

compiled

with

the

FLOATING_STACKS

parameter

turned

on.

Performance

Tuning

Options

XLSMPOPTS

Environment

Variable

Option

Description

spins=num

num

represents

the

number

of

loop

spins

before

a

yield

occurs.

When

a

thread

completes

its

work,

the

thread

continues

executing

in

a

tight

loop

looking

for

new

work.

One

complete

scan

of

the

work

queue

is

done

during

each

busy-wait

state.

An

extended

busy-wait

state

can

make

a

particular

application

highly

responsive,

but

can

also

harm

the

overall

responsiveness

of

the

system

unless

the

thread

is

given

instructions

to

periodically

scan

for

and

yield

to

requests

from

other

applications.

A

complete

busy-wait

state

for

benchmarking

purposes

can

be

forced

by

setting

both

spins

and

yields

to

0.

The

default

value

for

num

is

100.

yields=num

num

represents

the

number

of

yields

before

a

sleep

occurs.

When

a

thread

sleeps,

it

completely

suspends

execution

until

another

thread

signals

that

there

is

work

to

do.

This

provides

better

system

utilization,

but

also

adds

extra

system

overhead

for

the

application.

The

default

value

for

num

is

100.

delays=num

num

represents

a

period

of

do-nothing

delay

time

between

each

scan

of

the

work

queue.

Each

unit

of

delay

is

achieved

by

running

a

single

no-memory-access

delay

loop.

The

default

value

for

num

is

500.

Program

Parallelization

19

Dynamic

Profiling

Options

XLSMPOPTS

Environment

Variable

Option

Description

profilefreq=num

num

represents

the

sampling

rate

at

which

each

loop

is

revisited

to

determine

appropriateness

for

parallel

processing.

The

run-time

library

uses

dynamic

profiling

to

dynamically

tune

the

performance

of

automatically-parallelized

loops.

Dynamic

profiling

gathers

information

about

loop

running

times

to

determine

if

the

loop

should

be

run

sequentially

or

in

parallel

the

next

time

through.

Threshold

running

times

are

set

by

the

parthreshold

and

seqthreshold

dynamic

profiling

options,

described

below.

If

num

is

0,

all

profiling

is

turned

off,

and

overheads

that

occur

because

of

profiling

will

not

occur.

If

num

is

greater

than

0,

running

time

of

the

loop

is

monitored

once

every

num

times

through

the

loop.

The

default

for

num

is

16.

The

maximum

sampling

rate

is

32.

Higher

values

of

num

are

changed

to

32.

parthreshold=mSec

mSec

specifies

the

expected

running

time

in

milliseconds

below

which

a

loop

must

be

run

sequentially.

mSec

can

be

specified

using

decimal

places.

If

parthreshold

is

set

to

0,

a

parallelized

loop

will

never

be

serialized

by

the

dynamic

profiler.

The

default

value

for

mSec

is

0.2

milliseconds.

seqthreshold=mSec

mSec

specifies

the

expected

running

time

in

milliseconds

beyond

which

a

loop

that

has

been

serialized

by

the

dynamic

profiler

must

revert

to

being

run

in

parallel

mode

again.

mSec

can

be

specified

using

decimal

places.

The

default

value

for

mSec

is

5

milliseconds.

OpenMP

Run-Time

Options

for

Parallel

Processing

OpenMP

run-time

options

affecting

parallel

processing

are

set

by

specifying

OMP

environment

variables.

These

environment

variables,

which

must

be

set

before

you

run

an

application,

use

syntax

of

the

form:

��

env_variable

=

option_and_args

��

Note:

You

must

use

thread-safe

compiler

mode

invocations

when

compiling

parallelized

program

code.

OpenMP

run-time

options

fall

into

different

categories

as

described

below:

20

Technology

Preview

Scheduling

Algorithm

Environment

Variable

OMP_SCHEDULE=algorithm

This

option

specifies

the

scheduling

algorithm

used

for

loops

not

explictly

assigned

a

scheduling

alogorithm

with

the

omp

schedule

directive.

For

example:

OMP_SCHEDULE=“guided,

4”

Valid

options

for

algorithm

are:

v

dynamic[,

n]

v

guided[,

n]

v

runtime

v

static[,

n]

If

specified,

the

value

of

n

must

be

an

integer

value

of

1

or

greater.

The

default

is

scheduling

algorithm

is

static.

Parallel

Environment

Environment

Variables

OMP_NUM_THREADS=num

num

represents

the

number

of

parallel

threads

requested,

which

is

usually

equivalent

to

the

number

of

processors

available

on

the

system.

This

number

can

be

overridden

during

program

execution

by

calling

the

omp_set_num_threads(

)

runtime

library

function.

Some

applications

cannot

use

more

threads

than

the

maximum

number

of

processors

available.

Other

applications

can

experience

significant

performance

improvements

if

they

use

more

threads

than

there

are

processors.

This

option

gives

you

full

control

over

the

number

of

user

threads

used

to

run

your

program.

The

default

value

for

num

is

the

number

of

processors

available

on

the

system.

OMP_NESTED=TRUE|FALSE

This

environment

variable

enables

or

disables

nested

parallelism.

The

setting

of

this

environment

variable

can

be

overrridden

by

calling

the

omp_set_nested(

)

runtime

library

function.

If

nested

parallelism

is

disabled,

nested

parallel

regions

are

serialized

and

run

in

the

current

thread.

In

the

current

implementation,

nested

parallel

regions

are

always

serialized.

As

a

result,

OMP_SET_NESTED

does

not

have

any

effect,

and

omp_get_nested()

always

returns

0.

If

-qsmp=nested_par

option

is

on

(only

in

non-strict

OMP

mode),

nested

parallel

regions

may

employ

additional

threads

as

available.

However,

no

new

team

will

be

created

to

run

nested

parallel

regions.

The

default

value

for

OMP_NESTED

is

FALSE.

Program

Parallelization

21

Dynamic

Profiling

Environment

Variable

OMP_DYNAMIC=TRUE|FALSE

This

environment

variable

enables

or

disables

dynamic

adjustment

of

the

number

of

threads

available

for

running

parallel

regions.

If

set

to

TRUE,

the

number

of

threads

available

for

executing

parallel

regions

may

be

adjusted

at

runtime

to

make

the

best

use

of

system

resources.

If

set

to

FALSE,

dynamic

adjustment

is

disabled.

The

default

setting

is

TRUE.

Built-in

Functions

Used

for

Parallel

Processing

Use

these

built-in

functions

to

obtain

information

about

the

parallel

environment.

Function

definitions

for

the

omp_

functions

can

be

found

in

the

omp.h

header

file.

Function

Prototype

Description

int

omp_get_num_threads(void);

This

function

returns

the

number

of

threads

currently

in

the

team

executing

the

parallel

region

from

which

it

is

called.

int

omp_get_max_threads(void);

This

function

returns

the

maximum

value

that

can

be

returned

by

calls

to

omp_get_num_threads.

int

omp_get_thread_num(void);

This

function

returns

the

thread

number,

within

its

team,

of

the

thread

executing

the

function.

The

thread

number

lies

between

0

and

omp_get_num_threads()-1,

inclusive.

The

master

thread

of

the

team

is

thread

0.

int

omp_get_num_procs(void);

This

function

returns

the

maximum

number

of

processors

that

could

be

assigned

to

the

program.

int

omp_in_parallel(void);

This

function

returns

non-zero

if

it

is

called

within

the

dynamic

extent

of

a

parallel

region

executing

in

parallel;

otherwise,

it

returns

0.

void

omp_set_dynamic(int

dynamic_threads);

This

function

enables

or

disables

dynamic

adjustment

of

the

number

of

threads

available

for

execution

of

parallel

regions.

int

omp_get_dynamic(void);

This

function

returns

non-zero

if

dynamic

thread

adjustments

enabled

and

returns

0

otherwise.

void

omp_set_nested(int

nested);

This

function

enables

or

disables

nested

parallelism.

int

omp_get_nested(void);

This

function

returns

non-zero

if

nested

parallelism

is

enabled

and

0

if

it

is

disabled.

void

omp_init_lock(omp_lock_t

*lock);

void

omp_init_nest_lock(omp_nest_lock_t

*lock);

These

functions

provide

the

only

means

of

initializing

a

lock.

Each

function

initializes

the

lock

associated

with

the

parameter

lock

for

use

in

subsequent

calls.

void

omp_destroy_lock

(omp_lock_t

*lock);

void

omp_destroy_nest_lock

(omp_nest_lock_t

*lock);

These

functions

ensure

that

the

targeted

lock

variable

is

uninitialized.

void

omp_set_lock(omp_lock_t

*lock);

void

omp_set_nest_lock(omp_nest_lock_t

*lock);

Each

of

these

functions

blocks

the

thread

executing

the

function

until

the

specified

lock

is

available

and

then

sets

the

lock.

A

simple

lock

is

available

if

it

is

unlocked.

A

nestable

lock

is

available

if

it

is

unlocked

or

if

it

is

already

owned

by

the

thread

executing

the

function.

22

Technology

Preview

Function

Prototype

Description

void

omp_unset_lock(omp_lock_t

*lock);

void

omp_unset_nest_lock(omp_nest_lock_t

*lock);

These

functions

provide

the

means

of

releasing

ownership

of

a

lock.

int

omp_test_lock(omp_lock_t

*lock);

int

omp_test_nest_lock(omp_nest_lock_t

*lock);

These

functions

attempt

to

set

a

lock

but

do

not

block

execution

of

the

thread.

Note:

In

the

current

implementation,

nested

parallel

regions

are

always

serialized.

As

a

result,

omp_set_nested

does

not

have

any

effect,

and

omp_get_nested

always

returns

0.

Program

Parallelization

23

24

Technology

Preview

Objective-C

and

XL

C/C++

for

Mac

OS

X

Objective-C

is

an

object

oriented

extension

to

the

C

language.

IBM

XL

C/C++

provides

Objective-C

as

a

technology

preview

to

allow

application

developers

to

use

XL

C/C++

with

the

Cocoa

framework.

The

extended

capability

of

XL

C/C++

allows

greater

compatibility

with

the

Apple

integrated

development

environments

and

the

ability

to

use

XL

C/C++

to

compile

the

graphical

components

of

an

application.

The

compiler

recognizes

an

input

file

with

the

extension

.m

as

an

Objective-C

file,

and

compiles

it

without

requiring

a

specific

compiler

option.

Please

note

that

Objective-C++

files

are

not

supported.

If

the

input

file

has

the

file

name

extension

c,

C,

cpp,

cxx,

cc,

cp

or

c++

and

contains

Objective-C

code,

you

can

inform

the

compiler

to

compile

the

file

as

an

Objective-C

file

by

specifying

the

-qsourcetype=objc

compiler

option.

This

option

overrides

the

source

type

implied

by

the

suffix

of

the

source

file.

The

Objective-C

Technology

Preview

is

provided

to

demonstrate

new

language

functionality

and

has

not

been

tuned

for

performance.

Compiler

Options

The

following

are

commonly

used

options

when

compiling

Objective-C

programs:

–qsourcetype

The

–qsourcetype

option

supports

the

objc

sub-option

as

a

technology

preview.

The–qsourcetype

option

instructs

the

compiler

to

not

rely

on

the

filename

suffix,

and

to

instead

assume

a

source

type

as

specified

by

the

sub-option.

��

default

-qsourcetype

=

c

c++

objc

assembler

��

where:

default

The

compiler

assumes

that

the

programming

language

of

a

source

file

will

be

implied

by

its

filename

suffix.

c

The

compiler

compiles

all

source

files

following

this

option

as

if

they

are

C

language

source

files.

c++

The

compiler

compiles

all

source

files

following

this

option

as

if

they

are

C++

language

source

files.

objc

The

compiler

compiles

all

source

files

following

this

option

as

if

they

are

Objective-C

language

source

files.

assembler

The

compiler

compiles

all

source

files

following

this

option

as

if

they

are

Assembler

language

source

files.

©

Copyright

IBM

Corp.

2003

25

Example:

To

treat

the

source

file

hello.c

as

being

an

Objective-C

language

source

file

instead

of

a

C

file,

enter:

xlc

-qsourcetype=objc

hello.c

–framework

If

your

program

uses

any

of

the

Apple

frameworks

you

should

use

the

-framework

option.

This

option

is

passed

to

the

linkage

editor,

and

specifies

the

name

of

the

framework

to

link

to.

Example:

xlc

-o

myprogram

myprogram.m

-framework

Cocoa

–qframeworkdir

Adds

a

user-defined

framework

directory

to

the

framework

header

file

search

path.

��

-qframeworkdir

=

directory_path

��

Examples:

1.

You

can

specify

framework

directories

with

the

-qframeworkdir

compiler

option

as

following:

xlc

-o

myprogram

myprogram.m

-qframeworkdir=/User/myDir/Frameworks

-framework

myFramework

2.

The

following

option

specification

will

add

my_dir1,

my_dir2,

and

my_dir3

to

the

framework

header

file

search

path:

-qframeworkdir=my_dir1

-qframeworkdir=my_dir2

-qframeworkdir=my_dir3

User-defined

framework

directories

are

searched

in

the

order

that

they

are

defined

to

the

compiler.

In

the

above

example,

my_dir1

would

be

searched

first,

followed

by

my_dir2,

and

then

my_dir3.

–lobjc

If

your

Objective-C

program

does

not

use

any

framework

that

is

already

linked

to

the

Objective-C

runtime

library

(libobjc.dylib),

you

should

specify

the

-lobjc

option.

Failure

to

do

so

will

result

in

undefined

symbols

at

link

time.

Example:

xlc

-o

myprogram

myprogram.m

-lobjc

Limitations

v

You

cannot

link

Objective-C

object

modules

compiled

by

gcc

with

objective-C

modules

compiled

by

XL

C/C++.

v

The

new

Objective-C

exception

handling

and

thread

synchronization

features

are

not

supported.

v

A

keyword

may

not

be

used

as

a

selector

name.

For

example

in

the

following

instance

method

declaration:

-(void)

foo:(int)i

default:(int)j;

The

reserved

keyword

″default″

may

not

be

used

to

form

the

method

selector.

26

Technology

Preview

Notices

Trademarks

and

Service

Marks

The

following

terms

are

trademarks

of

the

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

IBM

Other

company,

product

and

service

names

may

be

trademarks

or

service

marks

of

others.

Industry

Standards

The

following

standards

are

supported:

v

The

C

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C

(ISO/IEC

9899-1999

(E)).

v

The

C

language

is

consistent

with

the

OpenMP

C

Application

Programming

Interface,

Version

1.0.

v

The

C++

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:1998).

©

Copyright

IBM

Corp.

2003

27

28

Technology

Preview

���

Program

Number:

5724-G12

	Contents
	Introduction
	Program Parallelization
	OpenMP Pragma Directives
	Using the smp compiler option

	Shared and Private Variables in a Parallel Environment
	Pragma Directives
	#pragma omp atomic
	Description
	Syntax
	Examples

	#pragma omp parallel
	Description
	Syntax
	Notes

	#pragma omp for
	Description
	Syntax
	Notes

	#pragma omp parallel for
	Description
	Syntax
	Notes

	#pragma omp ordered
	Description
	Syntax
	Notes

	#pragma omp section, #pragma omp sections
	Description
	Syntax
	Notes

	#pragma omp parallel sections
	Description
	Syntax
	Notes

	#pragma omp single
	Description
	Syntax
	Notes

	#pragma omp master
	Description
	Syntax
	Notes

	#pragma omp critical
	Description
	Syntax
	Notes

	#pragma omp barrier
	Description
	Syntax
	Notes

	#pragma omp flush
	Description
	Syntax
	Notes

	#pragma omp threadprivate
	Description
	Syntax
	Notes

	Parallel Processing Support
	Run-time Options for Parallel Processing
	Scheduling Algorithm Options
	Parallel Environment Options
	Performance Tuning Options
	Dynamic Profiling Options

	OpenMP Run-Time Options for Parallel Processing
	Scheduling Algorithm Environment Variable
	Parallel Environment Environment Variables
	Dynamic Profiling Environment Variable

	Built-in Functions Used for Parallel Processing

	Objective-C and XL C/C++ for Mac OS X
	Compiler Options
	–qsourcetype
	–framework
	–qframeworkdir
	–lobjc

	Limitations

	Notices
	Trademarks and Service Marks
	Industry Standards

